Quantum simulations with quantum hardware, Feb 7, 2022

Quantum Simulations using quantum computers on the cloud

Emanuele Dalla Torre

Dynamics of complex quantum systems

Daniel Azses (→ Tel Aviv University)

Avi Pe'er

Bar-Ilan University

Marcello

Strinati

Calvanese

 $(\rightarrow Rome)$

Leon Bello (→Princeton)

QUANTINUUM

Matthew Reagor

rigetti

Ma> Dup

Maxime Dupont

Quantum computing on the cloud: providers

Quantum computers on the cloud: example

IBM quantum experience (qiskit)

http://quantum-computing.ibm.com

 $|\psi\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$

Noise and errors

My thumb rule: "sum the errors until you reach 50%"

Largest square circuit = 5 qubit X 5 gate

Emanuele Dalla Torre Bar-Ilan University

E. Pelofske, A. Bärtschi and S. Eidenbenz, "Quantum Volume in Practice: What Users Can Expect From NISQ Devices," in *IEEE Transactions on Quantum Engineering*, vol. 3, pp. 1-19, 2022, Art no. 3102119.

 $QV = 2^5 = 32$

The great challenge of quantum computing

Model :

Reality :

Noisy superconducting circuits

Unitary quantum computer

Better hardware Quantum error correction

Noisy models

Emanuele Dalla Torre

What can you do with few qubits (and is it interesting?)

experiment

1) Non local games with 6 qubits

Sheffer, Azses, Dalla Torre, *Playing nonlocal games with 6 noisy qubits on the cloud*, *Adv. Quant. Tech 2021*

2) Simulating a BEC with 5 qubits

Dalla Torre, Reagor, *Simulating long-range coherence of atoms and photons in quantum computers* arXiv:2206.0838

3) Noisy Kibble-Zurek with 6 qubits

Azses, Dupont, Evert, Reagor, Dalla Torre *Navigating the noise-depth tradeoff in adiabatic quantum circuits* arXiv:2209.11245

Emanuele Dalla Torre Bar-Ilan University

quantum advantage

Non-local quantum games

a.k.a. Bell inequalities with many qubits

Example: "triangle game"

Bravyi, Gosset & Konig, Science 2018 Daniel & Myiaka, PRL 2021

$$\langle P(\text{win}) \rangle_{\text{quantum}} = 1$$

 $\langle P(\text{win}) \rangle_{\text{classical}} < 7/8$

Emanuele Dalla Torre

Minimal realization : 3 players = 6 qubits

 $\langle P(\text{win}) \rangle_{\text{classical}}$ < 7/8

Triangle game (6 qubit) : results

Emanuele Dalla Torre

Bar-Ilan University

Sheffer, Azses, Dalla Torre, arXiv: 2105.05266 (See also: Daniel et al 2110.04277)

If all the students fail a test... lower the bar!

 ∇

Stabilizers

$$s_i = Z_{i-1} X_i Z_{i+1}$$

$$s_i |\psi_{\text{cluster}}\rangle = |\psi_{\text{cluster}}\rangle$$

	aaa	bbb	dea
000	$X_1 X_3 X_5 = 1$	$X_2 X_4 X_6 = 1$	
001		$X_2 X_4 X_6 = 1$	
010		$X_2 X_4 X_6 = 1$	
011		$X_2 X_4 X_6 = 1$	$X_1 Y_3 X_4 Y_5 = -1$
100		$X_2 X_4 X_6 = 1$	
101		$X_2 X_4 X_6 = 1$	$Y_1 X_3 Y_5 X_6 = -1$
110		$X_2 X_4 X_6 = 1$	$Y_1 X_2 Y_3 X_5 = -1$
111		$X_2 X_4 X_6 = 1$	

 $(S_{\text{all}})_{\text{classic,n=6}} \le 28$

Guhne, Toth, Hyllus, Briegel PRL (2005)

Optimal sum

al sum
$$S_{\text{optimal}} = \sum_{i,j} s_i s_j + \sum_{i,j,k} s_i s_j s_k + \sum_{i,j,k,l} s_i s_j s_k s_{k+1}$$

 $\langle S_{\text{optimal}} \rangle_{\text{IonQ}} = 41 \pm 0.5$

$$(S_{\text{optimal}})_{\text{classic,n}=6} \le 19$$

Cabello, Guhne, Rodriguez PRA (2008)

Sum of all products

Bar-Ilan University

$$S_{\text{all}} = 1 + \sum_{i} s_{i} + \sum_{i,j} s_{i} s_{j} + \cdots$$
$$S_{\text{all}} |\psi_{\text{cluster}}\rangle = 2^{n} |\psi_{\text{cluster}}\rangle$$

What can you do with few qubits (and is it interesting?)

experiment

1) Non local games with 6 qubits

Sheffer, Azses, Dalla Torre, *Playing nonlocal games with 6 noisy qubits on the cloud, Adv. Quant. Tech 2021*

2) Simulating a BEC with 5 qubits

Dalla Torre, Reagor, Simulating long-range coherence of atoms and photons in quantum computers arXiv:2206.0838

3) Noisy Kibble-Zurek with 6 qubits

Azses, Dupont, Evert, Reagor, Dalla Torre *Navigating the noise-depth tradeoff in adiabatic quantum circuits* arXiv:2209.11245

Emanuele Dalla Torre Bar-Ilan University

quantum advantag

What is a Bose-Einstein condensate?

1. Macroscopic occupation of the ground state

2. Interference / phase coherence

Emanuele Dalla Torre

Bar-Ilan University

Anderson et al, Science 1995

What is the difference between a BEC and a laser?

Our answer: particle conservation!

- BEC: number of atoms conserved
- laser: number of photons not conserved

BEC of light (in dye molecules): photons number not conserved
 & no global phase

 $[n, \phi] = i$

 \rightarrow no global phase

ightarrow global phase

Our goal: simulate a BEC in a quantum computer

Step 1:

prepare a coherent state of qubit excitations (analogous to the coherent state of a laser)

Step 2:

measure the total number of particles

Step 3:

post-select the correct number

Emanuele Dalla Torre

How to probe a BEC state?

Order parameter: $S_{\theta} = \cos(\theta)S_x + \sin(\theta)S_y$.

Emanuele Dalla Torre

Results: 4 qubits + 1 ancilla

Why is this interesting?

- Leftover phase coherence (use 1 ancilla instead of 2)
- The BEC state is more coherent than the laser state
- Method to benchmark current quantum computers

What can you do with few qubits (and is it interesting?)

experiment

1) Non local games with 6 qubits

Sheffer, Azses, Dalla Torre, *Playing nonlocal games with 6 noisy qubits on the cloud, Adv. Quant. Tech 2021*

2) Simulating a BEC with 5 qubits

Dalla Torre, Reagor, *Simulating long-range coherence of atoms and photons in quantum computers* arXiv:2206.0838

3) Noisy Kibble-Zurek with 6 qubits

Azses, Dupont, Evert, Reagor, Dalla Torre *Navigating the noisedepth tradeoff in adiabatic quantum circuits* arXiv:2209.11245

Emanuele Dalla Torre Bar-Ilan University

Adiabatic crossing a phase transition

- Gap closing: no adiabatic theorem (no exponential suppression)
- Power-law suppression (critical exponents)

Kibble-Zurek scaling
$$d \sim v \frac{d}{v+z}$$

Extended to the Floquet case by Russomanno & Dalla Torre EPL 2015

Emanuele Dalla Torre

Bar-Ilan University

Wikipedia: Ising transition

Realizing a phase transition on a quantum computer

Floquet Ising model

$$H^{\text{PM}} = -\sum_{i=1}^{L} X_i$$
 and $H^{\text{FM}} = -\sum_{i=1}^{L-1} Z_i Z_{i+1}$,

Can be mapped to free fermions

Phase diagram:

Khemani et al 2016 and references therein

Emanuele Dalla Torre

Bar-Ilan University

See also talk by Daniel Azses

Noisy Floquet Kibble Zurek

Summary: Quantum simulations

Classical supercomputers

Quantum molecules/material

Size of Hilbert space = 2^{N_A}

Quantum field theories

Emanuele Dalla Torre Bar-Ilan University Ultracold atoms

Quantum computer on the cloud

Quantymize in a nutshell

- Founded in 2022 ٠
- Team: 7 experts (Industry, Quantum, AI) ۲
- **Purpose: Enabling 100x optimization capabilities using** ۲ quantum computing
- Solving large scale industry NP hard problems ٠ 2 main models introduced in QC:
 - Resource allocation optimization
 - Drugs usage optimization In development:
 - **Financial Portfolio Optimization**
 - Automotive preproduction optimization

information

- Breakthrough results already today ٠
- Funding seed investment ۲

Quantum Simulations using quantum computers on the cloud

1) Simulating a BEC with 5 qubits

Dalla Torre, Reagor, Simulating long-range coherence of atoms and photons in quantum computers arXiv:2206.0838

2) Non local games with 6 qubits

Sheffer, Azses, Dalla Torre, *Playing nonlocal games with 6 noisy qubits on the cloud, Adv. Quant. Tech 2021*

3) Crossing a phase transition with 5 qubits

Azses, Dupont, Evert, Reagor, Dalla Torre *Navigating the noise-depth tradeoff in adiabatic quantum circuits* (to be submitted)

Emanuele Dalla Torre Bar-Ilan University

EXTRA SLIDES

Emanuele Dalla Torre