MBCQED, Aspen, December 7, 2021

Bar-Ilan University

Emanuele Dalla Torre

http://www.nonequilibrium.org

SCIENCE & TECHNOLOGY BAR-ILAN UNIVERSITY

Quantum Dynamics of Complex Systems

Bar-Ilan University

Emanuele Dalla Torre

What is the difference between

steady-state superradiance and lasing?

A. SR is quantum and lasing is classical

B. Lasing in quantum and SR is classical

C. Only one of them is a phase transition

D. There is no real difference

E. None of the above

Bar-Ilan University

Emanuele Dalla Torre

Outline

Superradiance (3 slides)

Lasing (3 slides)

Extras (3 slides)

Bar-Ilan University

Emanuele Dalla Torre

Superradiant transition (steady state)

Dicke model (Hepp&Lieb 1973)
$$H = \omega_0 a^+ a + \frac{\lambda}{\sqrt{N}} (a + a^+) \sum_{i=1}^N \sigma_i^x + \omega_z \sum_{i=1}^N \sigma_i^z$$

Conservation of the total spin

$$\vec{S} = \sum_{i} \vec{\sigma_i}$$

$$H = \omega_0 a^+ a + \frac{\lambda}{\sqrt{N}} (a + a^+) S^x + \omega_z S^z$$

 λ_c

"Ising model of quantum optics" $|\frac{\langle a \rangle}{\sqrt{N}}|$

$$\langle a \rangle = |\lambda - \lambda_c|^{-1/2}$$

See Intro: Kirton, Roses, Keeling, Dalla Torre (2019) and Wikipedia page "Dicke model"

Bar-Ilan University

Emanuele Dalla Torre

http://www.nonequilibrium.org

λ

Superradiance – linear stability

$$H = \omega_0 a^+ a + \frac{\lambda}{\sqrt{N}} (a + a^+) S^x + \omega_z S^z$$

Holstein-Primakoff (linearization)

 $S^+ \approx \sqrt{N} b^+ \qquad H = \omega_0 a^+ a + \lambda (a + a^+)(b + b^+) + \omega_z b^+ b$

Bar-Ilan University

Experiments: single atom decay or Doppler shift?

$$H = \omega_0 a^+ a + \frac{\lambda}{\sqrt{N}} (a + a^+) \sum_{i=1}^N \sigma_i^x + \omega_z \sum_{i=1}^N \sigma_i^z$$

Controlled 1/N diagrammatic approach:

$$\lambda_c^{-2} = \frac{2}{N} \sum_{i=1}^{N} \int_0^\infty dt \left\langle \left[\sigma_i^x(0), \sigma_i^x(t) \right] \right\rangle$$

- ✓ Equilibrium (T = 0 and $T \neq 0$)
- ✓ Nonequilibrium with or without spin conservation
- ✓ Polarization = sufficient condition for Dicke transition (no correlations or entanglement)
 - Cfr. Lamb theory of lasing transition

Dalla Torre, Shchadilova, Wilner, Lukin, Demler, PRA (2017). Kirton and Keeling PRL (2017)

Bar-Ilan University

Outline

Superradiance (3 slides)

Lasing (3 slides)

Extras (3 slides)

Bar-Ilan University

Emanuele Dalla Torre

Generalized Dicke model

Anti-Tavis-Cummings model ($\lambda = 0$)

Decay $|1\rangle \rightarrow |0\rangle =$ "counter-repumping"

 \rightarrow Counterlasing

Shchadilova et al PRA (2020), Kirton, Keeling, NJP (2018)

Bar-Ilan University

Emanuele Dalla Torre

Counterlasing transition – linear analysis

Bar-Ilan University

Emanuele Dalla Torre

Summary: superradiance vs (counter)lasing

Pitchfork

Hopf instability

- Diverging fluctuations
- Static (in the pump frame)
- Discrete time crystal

- No Diverging fluctuations
- Rotating (in the pump frame)
- Continuous time crystal

See also lecture by Hans Kessler

Emanuele Dalla Torre

Outline

Superradiance (3 slides)

Counterlasing (3 slides)

Extras (3 slides)

Emanuele Dalla Torre

Extra: coupled parametric oscillators

See also lecture by Peter McMahon

Parametric instability: simplest example of discrete time crystal (period doubling)

L. Bello, M. Calvanese Strinati, E. G. Dalla Torre, A. Pe'er, PRL&PRA (2020), NJP (2020)

Bar-Ilan University

Emanuele Dalla Torre

Many coupled PO : coherent Ising machines (CIM)

Goal: eurisitic solution of the Ising problem (NP hard)

CIM = dissipative Ising model [Yamamoto]

 $H = \sum_{i,j} J_{i,j} \sigma_i \sigma_j$ with $\sigma_i = \pm 1$

Linear analysis: Maximal eigenvalue of $J_{i,i}$???

M. Calvanese Strinati, L. Bello, E. G. Dalla Torre, A. Pe'er, PRL (2021)

Bar-Ilan University

Extra 2 - Rigetti (Berkeley, CA)

Full Stack Quantum Computing founded by Chad Rigetti in 2013

QuIC fabrication facility / foundry service: Fast iteration + flexible, fine tuned control over process

Best of CZ/XY (median $4.3 \pm 0.6\%$)

Bar-Ilan University

Emanuele Dalla Torre

Summary: superradiance vs (counter)lasing

- Diverging fluctuations
- Static (in the pump frame)
- Discrete time crystal

Hopf instability

- No Diverging fluctuations
- Rotating (in the pump fram
- Continuous time crystal

See also lecture by Hans Kessler

Idea by Alessandro Silva

QUANTUM **E**NTANGLEMEN⁻ SCIENCE & **T**ECHNOLOGY BAR-ILAN UNIVERSITY

Bar-Ilan University